If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2-27x-10=0
a = 81; b = -27; c = -10;
Δ = b2-4ac
Δ = -272-4·81·(-10)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-63}{2*81}=\frac{-36}{162} =-2/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+63}{2*81}=\frac{90}{162} =5/9 $
| 102x=24 | | x/8-1/4=20 | | 4-3x-2=7 | | 0.4(n-5)=0.4-0.2n | | 6x+2(3‐x)=14 | | 7x2-2=0 | | 3-m/9=14 | | 9y-4=-3y-10 | | 81x^2+20x+506.25=0 | | 9x2-2=0 | | 0.04x+0.07(13000+x)=780 | | 81x^2+20x+6.25=0 | | 2.5x+5=12.5 | | 2-3+x=2 | | 12(b+3)=4(2b+9)+4b | | X2+y2+1=0 | | 10x-20+1=6x-3 | | 4(x+2/3)=5(x+5/6) | | 5.5-b=-4.5-b | | x^2+16x=-364 | | 2b+5=2b-3 | | 2-3r+4r=-5 | | -9(x+10)=18 | | -6(5a+6)=-126 | | -9(x+10=18 | | 66=2(1-5v)+4 | | 7x-100=2x+1200 | | 3n+15=3(n+5) | | -8=2b-5-3b | | -16=-4m-4 | | 10n-8/3-4n=6n | | 3x÷4+51=3 |